1,578 research outputs found

    State-of-the-art and gaps for deep learning on limited training data in remote sensing

    Full text link
    Deep learning usually requires big data, with respect to both volume and variety. However, most remote sensing applications only have limited training data, of which a small subset is labeled. Herein, we review three state-of-the-art approaches in deep learning to combat this challenge. The first topic is transfer learning, in which some aspects of one domain, e.g., features, are transferred to another domain. The next is unsupervised learning, e.g., autoencoders, which operate on unlabeled data. The last is generative adversarial networks, which can generate realistic looking data that can fool the likes of both a deep learning network and human. The aim of this article is to raise awareness of this dilemma, to direct the reader to existing work and to highlight current gaps that need solving.Comment: arXiv admin note: text overlap with arXiv:1709.0030

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    The arithmetic recursive average as an instance of the recursive weighted power mean

    Get PDF
    The aggregation of multiple information sources has a long history and ranges from sensor fusion to the aggregation of individual algorithm outputs and human knowledge. A popular approach to achieve such aggregation is the fuzzy integral (FI) which is defined with respect to a fuzzy measure (FM (i.e. a normal, monotone capacity). In practice, the discrete FI aggregates information contributed by a discrete number of sources through a weighted aggregation (post-sorting), where the weights are captured by a FM that models the typically subjective ‘worth’ of subsets of the overall set of sources. While the combination of FI and FM has been very successful, challenges remain both in regards to the behavior of the resulting aggregation operators—which for example do not produce symmetrically mirrored outputs for symmetrically mirrored inputs—and also in a manifest difference between the intuitive interpretation of a stand-alone FM and its actual role and impact when used as part of information fusion with a FI. This paper elucidates these challenges and introduces a novel family of recursive average (RAV) operators as an alternative to the FI in aggregation with respect to a FM; focusing specifically on the arithmetic recursive average. The RAV is designed to address the above challenges, while also facilitating fine-grained analysis of the resulting aggregation of different combinations of sources. We provide the mathematical foundations of the RAV and include initial experiments and comparisons to the FI for both numeric and interval-valued data

    Data-informed fuzzy measures for fuzzy integration of intervals and fuzzy numbers

    Get PDF
    The fuzzy integral (FI) with respect to a fuzzy measure (FM) is a powerful means of aggregating information. The most popular FIs are the Choquet and Sugeno, and most research focuses on these two variants. The arena of the FM is much more populated, including numerically derived FMs such as the Sugeno λ-measure and decomposable measure, expert-defined FMs, and data-informed FMs. The drawback of numerically derived and expert-defined FMs is that one must know something about the relative values of the input sources. However, there are many problems where this information is unavailable, such as crowdsourcing. This paper focuses on data-informed FMs, or those FMs that are computed by an algorithm that analyzes some property of the input data itself, gleaning the importance of each input source by the data they provide. The original instantiation of a data-informed FM is the agreement FM, which assigns high confidence to combinations of sources that numerically agree with one another. This paper extends upon our previous work in datainformed FMs by proposing the uniqueness measure and additive measure of agreement for interval-valued evidence. We then extend data-informed FMs to fuzzy number (FN)-valued inputs. We demonstrate the proposed FMs by aggregating interval and FN evidence with the Choquet and Sugeno FIs for both synthetic and real-world data

    Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection

    Full text link
    A significant challenge in object detection is accurate identification of an object's position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS) applications.Comment: 21 pages, 12 figures, journal paper, MDPI Sensors, 201

    Enabling Explainable Fusion in Deep Learning with Fuzzy Integral Neural Networks

    Full text link
    Information fusion is an essential part of numerous engineering systems and biological functions, e.g., human cognition. Fusion occurs at many levels, ranging from the low-level combination of signals to the high-level aggregation of heterogeneous decision-making processes. While the last decade has witnessed an explosion of research in deep learning, fusion in neural networks has not observed the same revolution. Specifically, most neural fusion approaches are ad hoc, are not understood, are distributed versus localized, and/or explainability is low (if present at all). Herein, we prove that the fuzzy Choquet integral (ChI), a powerful nonlinear aggregation function, can be represented as a multi-layer network, referred to hereafter as ChIMP. We also put forth an improved ChIMP (iChIMP) that leads to a stochastic gradient descent-based optimization in light of the exponential number of ChI inequality constraints. An additional benefit of ChIMP/iChIMP is that it enables eXplainable AI (XAI). Synthetic validation experiments are provided and iChIMP is applied to the fusion of a set of heterogeneous architecture deep models in remote sensing. We show an improvement in model accuracy and our previously established XAI indices shed light on the quality of our data, model, and its decisions.Comment: IEEE Transactions on Fuzzy System

    Introducing Fuzzy Layers for Deep Learning

    Full text link
    Many state-of-the-art technologies developed in recent years have been influenced by machine learning to some extent. Most popular at the time of this writing are artificial intelligence methodologies that fall under the umbrella of deep learning. Deep learning has been shown across many applications to be extremely powerful and capable of handling problems that possess great complexity and difficulty. In this work, we introduce a new layer to deep learning: the fuzzy layer. Traditionally, the network architecture of neural networks is composed of an input layer, some combination of hidden layers, and an output layer. We propose the introduction of fuzzy layers into the deep learning architecture to exploit the powerful aggregation properties expressed through fuzzy methodologies, such as the Choquet and Sugueno fuzzy integrals. To date, fuzzy approaches taken to deep learning have been through the application of various fusion strategies at the decision level to aggregate outputs from state-of-the-art pre-trained models, e.g., AlexNet, VGG16, GoogLeNet, Inception-v3, ResNet-18, etc. While these strategies have been shown to improve accuracy performance for image classification tasks, none have explored the use of fuzzified intermediate, or hidden, layers. Herein, we present a new deep learning strategy that incorporates fuzzy strategies into the deep learning architecture focused on the application of semantic segmentation using per-pixel classification. Experiments are conducted on a benchmark data set as well as a data set collected via an unmanned aerial system at a U.S. Army test site for the task of automatic road segmentation, and preliminary results are promising.Comment: 6 pages, 4 figures, published in 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE
    • …
    corecore